FocusOn Neurology
  • Gastrointestinal Resource Center
  • Highlights from ACG2024 - Focus on Ulcerative Colitis
  • Highlights from ACG2024 - Focus On Fatty Liver Disease
  • Inflammatory Bowel Disease
  • NASH Resource Center
  • Highlights from DDW 2025
  • Gastrointestinal Resource Center
  • Highlights from ACG2024 - Focus on Ulcerative Colitis
  • Highlights from ACG2024 - Focus On Fatty Liver Disease
  • Inflammatory Bowel Disease
  • NASH Resource Center
  • Highlights from DDW 2025

Advanced Search

Advanced Search

  • Featured:
  • Highlights from DDW 2025

Modulating intestinal neuroimmune VIPergic signaling attenuates the reduction in ILC3-derived IL-22 and hepatic steatosis in MASLD

September 2024
Hepatology Communications

Back to NASH Resource Center

Read Full Article

Abstract

Background: 

Metabolic dysfunction–associated steatotic liver disease (MASLD, formerly known as NAFLD) is a major driver of cirrhosis and liver-related mortality. However, therapeutic options for MASLD, including prevention of liver steatosis, are limited. We previously described that vasoactive intestinal peptide–producing neurons (VIP-neurons) regulate the efficiency of intestinal dietary fat absorption and IL-22 production by type 3 innate lymphoid cells (ILC3) in the intestine. Given the described hepatoprotective role of IL-22, we hypothesize that modulation of this neuroimmune circuit could potentially be an innovative approach for the control of liver steatosis.

Methods: 

We used a model of diet-induced MASLD by exposing mice to a high-fat diet (HFD) for 16 weeks, when the development of liver steatosis was first observed in our animals. We characterized IL-22 production by intestinal ILC3 at this dietary endpoint. We then evaluated whether communication between VIP-neurons and ILC3 affected IL-22 production and MASLD development by exposing mice with a conditional genetic deletion of Vipr2 in ILC3 (Rorc(t)CreVipr2fl/fl) to the HFD. We also performed intermittent global inhibition of VIP-neurons using a chemogenetic inhibitory approach (VipIres-CrehM4DiLSL) in HFD-fed mice.

Results: 

Production of IL-22 by intestinal ILC3 is reduced in steatotic mice that were exposed to an HFD for 16 weeks. Targeted deletion of VIP receptor 2 in ILC3 resulted in higher production of IL-22 in ILC3 and was associated with a significant reduction in liver steatosis in mice under HFD. Global inhibition of VIP-producing neurons also resulted in a significant reduction in liver steatosis.

Conclusions: 

Modulating VIPergic neuroimmune signaling can ameliorate the development of hepatic steatosis induced by a surplus of fat ingestion in the diet. This neuroimmune pathway should be further investigated as a potential therapeutic avenue in MASLD.

FocusOn logo
  • Articles
  • Multimedia
  • Blog
  • Resources
  • About FocusOn
  • Privacy Policy
  • Terms of Use

© 2025 Wolters Kluwer. All right reserved.

Your Privacy

To give you the best possible experience we use cookies and similar technologies. We use data collected through these technologies for various purposes, including to enhance website functionality, remember your preferences, show the most relevant content, and show the most useful ads. You can select your preferences by clicking the link. For more information, please review our Privacy and Cookie Policy.

|
|

Cookie Policy

Information about our use of cookies

Wolters Kluwer ("we" or "us") wants to inform you about the ways we process your personal information. In this Privacy & Cookie Notice we explain what personal information we collect, use and disclose.

Personal information means any data relating to an individual who can be identified, directly or indirectly, based on that information. This may include information such as names, contact details, (online) identification data, online identifiers, or other characteristics specific to that individual.

Read More