FocusOn Neurology
  • Gastrointestinal Resource Center
  • Highlights from ACG2024 - Focus on Ulcerative Colitis
  • Highlights from ACG2024 - Focus On Fatty Liver Disease
  • Inflammatory Bowel Disease
  • NASH Resource Center
  • Highlights from DDW 2025
  • Gastrointestinal Resource Center
  • Highlights from ACG2024 - Focus on Ulcerative Colitis
  • Highlights from ACG2024 - Focus On Fatty Liver Disease
  • Inflammatory Bowel Disease
  • NASH Resource Center
  • Highlights from DDW 2025

Advanced Search

Advanced Search

  • Featured:
  • Highlights from DDW 2025

A genetic basis of mitochondrial DNAJA3 in nonalcoholic steatohepatitis-related hepatocellular carcinoma

January 2025
Hepatology

Back to NASH Resource Center

Read Full Article

Abstract

Background and Aims: 

NAFLD is the most common form of liver disease worldwide, but only a subset of individuals with NAFLD may progress to NASH. While NASH is an important etiology of HCC, the underlying mechanisms responsible for the conversion of NAFLD to NASH and then to HCC are poorly understood. We aimed to identify genetic risk genes that drive NASH and NASH-related HCC.

Approach and Results: 

We searched genetic alleles among the 24 most significant alleles associated with body fat distribution from a genome-wide association study of 344,369 individuals and validated the top allele in 3 independent cohorts of American and European patients (N=1380) with NAFLD/NASH/HCC. We identified an rs3747579-TT variant significantly associated with NASH-related HCC and demonstrated that rs3747579 is expression quantitative trait loci of a mitochondrial DnaJ Heat Shock Protein Family (Hsp40) Member A3 (DNAJA3). We also found that rs3747579-TT and a previously identified PNPLA3 as a functional variant of NAFLD to have significant additional interactions with NASH/HCC risk. Patients with HCC with rs3747579-TT had a reduced expression of DNAJA3 and had an unfavorable prognosis. Furthermore, mice with hepatocyte-specific Dnaja3 depletion developed NASH-dependent HCC either spontaneously under a normal diet or enhanced by diethylnitrosamine. Dnaja3-deficient mice developed NASH/HCC characterized by significant mitochondrial dysfunction, which was accompanied by excessive lipid accumulation and inflammatory responses. The molecular features of NASH/HCC in the Dnaja3-deficient mice were closely associated with human NASH/HCC.

Conclusions: 

We uncovered a genetic basis of DNAJA3 as a key player of NASH-related HCC.

FocusOn logo
  • Articles
  • Multimedia
  • Blog
  • Resources
  • About FocusOn
  • Privacy Policy
  • Terms of Use

© 2025 Wolters Kluwer. All right reserved.

Your Privacy

To give you the best possible experience we use cookies and similar technologies. We use data collected through these technologies for various purposes, including to enhance website functionality, remember your preferences, show the most relevant content, and show the most useful ads. You can select your preferences by clicking the link. For more information, please review our Privacy and Cookie Policy.

|
|

Cookie Policy

Information about our use of cookies

Wolters Kluwer ("we" or "us") wants to inform you about the ways we process your personal information. In this Privacy & Cookie Notice we explain what personal information we collect, use and disclose.

Personal information means any data relating to an individual who can be identified, directly or indirectly, based on that information. This may include information such as names, contact details, (online) identification data, online identifiers, or other characteristics specific to that individual.

Read More